-->
为11月的流媒体连接保存您的免费座位. 现在注册!

带有AI辅助的旋转镜

文章特色图片

Rotoscope是一种跟踪视频帧的技术,它可以创建一个可以用来删除部分帧(通常是背景)的哑光图像,也可以根据摄像机捕获的内容创建动画. 1915年由动画师Max Fleischer发明, 这种手法在拉尔夫·巴克希1978年的《百家乐软件app最新版下载》等作品中得到了广泛应用, 史蒂夫·巴伦1985年为A-Ha制作的《百家乐软件app最新版下载》视频, 和理查德·林克莱特2001年的《百家乐软件app最新版下载》. 在过去的几年里,随着人工智能在场景检测任务中的巨大进步, 人工智能辅助的旋转显微镜现在已经广泛使用.

对于人工智能光镜生成类型的工作, 象征 是早期的玩家, 最初使用微软Xbox Kinect摄像头(同时具有可见光和红外传感器)生成哑光,以识别画面中的人物. 该公司后来开发了一种软件,仅通过可见光摄像头就能识别出该人, 然后将该技术授权给罗技用于其C922网络摄像头. 类似的技术现在也被内置到Zoom中, 微软团队, 以及其他视频会议软件,通过场景检测和哑光生成,在视频通话期间删除或模糊背景. 这些功能对于教育视频来说具有很大的价值,既可以保护隐私,又可以在背景中而不是在房间中显示信息丰富的数字视觉辅助工具.

还有其他对教育有价值的工具, 例如那些使用旋转镜作为一种基于摄像机镜头生成动画的手段. 一个工具是 EbSynth,目前处于免费测试阶段. 电影制作人Joel Haver提供了一个非常有趣的教程, 他把自己的YouTube频道建立在了“滚动放映”(go2sm)带来的可能性之上.com/roto). 我使用的一种时间密集得多的技术是基于东京大学的王鑫瑞和于金泽的一篇论文,以及他们在GitHub (go2sm)上发表的TensorFlow实现.com/whitebox). TensorFlow是一个广泛使用的开源机器学习平台,通常与Python编程语言一起使用. 本文描述了在照片和这些照片的手绘漫画上训练生成对抗网络(GAN),以便GAN可以生成新的漫画. 通过在不同的照片/绘图对数据集上训练gan, 你可以调整它制作的卡通风格, 尽管本文的结果来自同一个训练集.

视频基本上就是一本翻页书, 所以我们可以使用王和余的技术将视频重新绘制为卡通, 一页一页,一帧一帧. 第一步是检查我们的视频. 为了简单起见,我将一个公共领域NOAA视频剪辑为15帧,并将其保存在GitHub上的项目测试代码文件夹中.

>ffmpeg -i NOAA_SharkClip_15.mp4

输入#0,mov,mp4,m4a,3gp,3g2,mj2, 从“NOAA_SharkClip_15.mp4:

持续时间:00:00:47.49、启动:0.000000,比特率:2582kb /s

流#0:0[0x1](eng):视频:h264(主)(avc1 / 0x31637661), yuv420p(进步), 960x540 [SAR 1:1 DAR 16:9], 2457 kb /秒, 15帧/秒, 15为, 30k TBN(默认)

[0x2](eng):音频:aac (LC) (mp4a / 0x6134706D), 48000 Hz, 立体声, fltp, 125 kb/s(默认)

从这个输出中需要注意的重要一点是,第0个流是视频, 它是15帧/秒,分辨率为960x540. 然后我把这个视频的所有帧都导出为PNG文件:

>ffmpeg -i NOAA_SharkClip_15.Mp4 -an -r 15 -s 960x540 test_images/frame%06d.png

该命令的最后一个参数告诉它将PNG文件写入test_images文件夹,并将其命名为“frame”,然后是六位数的帧数,然后是 .png扩展. 如果你的视频很长,你需要增加前导0的数量. 之后,运行卡通化.Py程序将test_images中的所有摄影图像转换为卡通图像,在cartoonized_images文件夹中具有相同的文件名. 这个过程可能需要很长时间,除非你有一个CUDA计算能力为3的显卡.5或以上.

使用旧款特斯拉K20卡, 处理这段48秒视频的所有帧大约需要6分钟. 一旦cartoonize.Py完成它的工作, 使用FFmpeg从这些帧生成新的视频, 在一个拷贝的音频流中从原始视频文件中提取.

>ffmpeg -r 15 -i cartoonized_images/frame%06d.. png -i NOAA_SharkClip_15 . png.mp4 -map 0:0 -map 1:1 -vcodec libx264 -tune animation -b:v 2M -s 960x540 - codec copy NOAA_SharkToon_15 . mp4.mp4

这里的关键是在输入上使用-r帧率标志,以便每秒只使用15帧来创建新的视频流, 和-map标志指示FFmpeg使用第0个输入流和第1个输入流(音频). 这个过程的并行结果可以在这里找到http://go2sm.com/noaa. 对于这项技术,我有两个用例. 一种方法是在模拟事件的镜头中隐藏不相关的细节,这样学生就不会分心. 另一个是模糊背景镜头的类似动机:视频可以是一种亲密的教学模式, 许多老师不愿意向远程学生展示自己的脸.

流媒体覆盖
免费的
合资格订户
现在就订阅 最新一期 过去的问题
相关文章

如何选择高校视频管理系统

因此,您需要一个新的视频管理系统(VMS)? 这里有一些建议,以确保您的VMS不会危及您的学校或学生的数据.

在线视频学习:和面对面学习一样好?

自疫情开始以来,有很多关于在线教育视频的文章, 结果令人惊讶, 虽然远没有定论.

如何设计一个混合教室

面对面还是虚拟? 不再是非此即彼了, 学校和大学需要有明确的策略向学生提供混合教育.